ОГЭ, Математика. Геометрия: Задача №7ABB40 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №7ABB40

Задача №792 из 1087
Условие задачи:

Из точки А проведены две касательные к окружности с центром в точке О. Найдите радиус окружности, если угол между касательными равен 60°, а расстояние от точки А до точки О равно 6.

Решение задачи:

Проведем отрезок АО, данный отрезок равен 6 (по условию задачи). Обозначим одну из точек касания окружности и касательной как Р. Проведем отрезок ОР. ОР является перпендикуляром к касательной АР (по свойству касательной). Рассмотрим треугольник АОР. Данный треугольник является прямоугольным,т.к. ОР перпендикулярен АР. АО является биссектрисой угла, образованного касательными (свойство касательных прямых). Соответственно угол РАО равен половине данного угла, т.е. 30°. Синус угла PAO равен 1/2 (табличное значение) и равен отношению ОР к АО (по определению синуса). Соответственно, ОР равняется половине АО, т.е. 3. ОР - это и есть радиус окружности.
Ответ: 3

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №FFD85C

Укажите номера верных утверждений.
1) Существует ромб, который не является квадратом.
2) Если две стороны треугольника равны, то равны и противолежащие им углы.
3) Касательная к окружности параллельна радиусу, проведённому в точку касания.



Задача №08E95E

В равнобедренную трапецию, периметр которой равен 200, а площадь равна 2000, можно вписать окружность. Найдите расстояние от точки пересечения диагоналей трапеции до её меньшего основания.



Задача №088A84

Прямая, параллельная основаниям трапеции ABCD, пересекает её боковые стороны AB и CD в точках E и F соответственно. Найдите длину отрезка EF, если AD=42, BC=14, CF:DF=4:3.



Задача №3A524F

Площадь прямоугольного треугольника равна 2003/3. Один из острых углов равен 60°. Найдите длину катета, лежащего напротив этого угла.



Задача №051A2A

В параллелограмме ABCD диагонали AC и BD пересекаются в точке K. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника AKD.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X 
α sinα cosα tgα ctgα
0 1 0 ---
30° 1/2 3/2 3/3 3
45° 2/2 2/2 1 1
60° 3/2 1/2 3 3/3
90° 1 0 --- 0
120° 3/2 -1/2 -3 0
135° 2/2 -2/2 -1 -1
150° 1/2 -3/2 -3/3 -3
180° 0 -1 0 ---
210° -1/2 -3/2 3/3 3
225° -2/2 -2/2 1 1
240° -3/2 -1/2 3 3/3
270° -1 0 --- 0
300° -3/2 1/2 -3 -3/3
315° -2/2 2/2 -1 -1
330° -1/2 3/2 -3/3 -3
360° 1 0 0 ---
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика