В равнобедренной трапеции известны высота, меньшее основание и угол при основании. Найдите большее основание.
Проведем
высоту CF.
Рассмотрим треугольники ABE и DCF.
∠BAE=∠CDF=45° (по
свойству равнобедренной трапеции).
∠BEA=∠CFD=90° (так как BE и CF -
высоты).
Используя
теорему о сумме углов треугольника, получаем, что:
∠EBA=∠FCD
AB=CD (по
определению равнобедренной трапеции).
Следовательно, данные треугольники равны (по
второму признаку равенства треугольников).
Значит, AE=FD.
Рассмотрим треугольник ABE.
По
определению tg∠BAE=BE/AE
tg45°=5/AE=1 (по
таблице)
AE=5
EF=BC=6 (так как BCFE -
прямоугольник)
AD=AE+EF+FD=5+6+5=16
Ответ: AD=16
Поделитесь решением
Присоединяйтесь к нам...
Найдите острые углы прямоугольного треугольника, если его гипотенуза равна 20, а площадь равна 50√
В треугольнике ABC угол C прямой, BC=9, sinA=0,3. Найдите AB.
Биссектрисы углов B и C трапеции ABCD пересекаются в точке O, лежащей на стороне AD. Докажите, что точка O равноудалена от прямых AB, BC и CD.
Один из углов равнобедренной трапеции равен 113°. Найдите меньший угол этой трапеции. Ответ дайте в градусах.
Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=7 и MB=9. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.
α | sinα | cosα | tgα | ctgα |
0° | 0 | 1 | 0 | --- |
30° | 1/2 | √ |
√ |
√ |
45° | √ |
√ |
1 | 1 |
60° | √ |
1/2 | √ |
√ |
90° | 1 | 0 | --- | 0 |
120° | √ |
-1/2 | -√ |
0 |
135° | √ |
-√ |
-1 | -1 |
150° | 1/2 | -√ |
-√ |
-√ |
180° | 0 | -1 | 0 | --- |
210° | -1/2 | -√ |
√ |
√ |
225° | -√ |
-√ |
1 | 1 |
240° | -√ |
-1/2 | √ |
√ |
270° | -1 | 0 | --- | 0 |
300° | -√ |
1/2 | -√ |
-√ |
315° | -√ |
√ |
-1 | -1 |
330° | -1/2 | √ |
-√ |
-√ |
360° | 1 | 0 | 0 | --- |
Комментарии: