В треугольнике ABC угол C равен 90°, AC=4, AB=5. Найдите sinB.
Так как ∠С=90°, то треугольник ABC -
прямоугольный.
Следовательно:
sinB=AC/AB=4/5=0,8 (по определению).
Ответ: 0,8
Поделитесь решением
Присоединяйтесь к нам...
Точка O – центр окружности, на которой лежат точки H, I и K таким образом, что OHIK – ромб. Найдите угол OKI. Ответ дайте в градусах.
В треугольнике ABC угол A равен 45°, угол B равен 30°, BC=6√
Косинус острого угла А треугольника равен
. Найдите sinA.
Медиана BM и биссектриса AP треугольника ABC пересекаются в точке K,
длина стороны AC втрое больше длины стороны AB. Найдите отношение площади треугольника ABK к площади четырёхугольника KPCM.
Стороны AC, AB, BC треугольника ABC равны 2√




Комментарии: