Площадь прямоугольного треугольника равна 392√
Обозначим:
a - искомый катет
b - второй катет
c - гипотенуза
sin30°=1/2 (
табличное значение)
sin30°=a/c=1/2 (по
определению синуса)
c=2a
По
теореме Пифагора:
a2+b2=c2
a2+b2=(2a)2
b2=3a2
b=a√
Из условия: Sтреугольника=ab/2=392√
a*a√
Сокращаем √
a2=392*2=784
a=28
Ответ: a=28
Поделитесь решением
Присоединяйтесь к нам...
Найдите величину острого угла параллелограмма ABCD, если биссектриса угла A образует со стороной BC угол, равный 1°. Ответ дайте в градусах.
Точка О – центр окружности, /BAC=75° (см. рисунок). Найдите величину угла BOC (в градусах).
Найдите острые углы прямоугольного треугольника, если его гипотенуза равна 16, а площадь равна 32√
В параллелограмме АВСD проведены перпендикуляры ВЕ и DF к диагонали АС (см. рисунок). Докажите, что отрезки ВF и DЕ параллельны.
Сторона равностороннего треугольника равна 12√3. Найдите радиус окружности, описанной около этого треугольника.




Комментарии: