В треугольнике ABC угол C равен 90°, cosB=2/5, AB=10. Найдите BC.
По
определению косинуса:
cosB=BC/AB
2/5=BC/10
BC=(2*10)/5=2*2=4
Ответ: 4
Поделитесь решением
Присоединяйтесь к нам...
Боковые стороны AB и CD трапеции ABCD равны соответственно 20 и 25, а основание BC равно 5. Биссектриса угла ADC проходит через середину стороны AB. Найдите площадь трапеции.
Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=7 и MB=9. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.
В окружности с центром в точке О проведены диаметры AD и BC, угол
OCD равен 30°. Найдите величину угла OAB.
На стороне AC треугольника ABC отмечена точка D так, что AD=3, DC=7. Площадь треугольника ABC равна 20. Найдите площадь треугольника BCD.
Медиана равностороннего треугольника равна 9√




Комментарии: