Площадь параллелограмма равна 60, а две его стороны равны 4 и 20. Найдите его высоты. В ответе укажите большую высоту.
В данной задаче достаточно воспользоваться
первой формулой для параллелограмма.
S=ah, где а - сторона параллелограмма, а h - высота, опущенная к этой стороне.
h=S/a
Тогда первая высота равна:
h1=60/4=15
h2=60/20=3
Ответ: 15
Поделитесь решением
Присоединяйтесь к нам...
Площадь круга равна 88. Найдите площадь сектора этого круга, центральный угол которого равен 45°.
Найдите больший угол равнобедренной трапеции ABCD, если диагональ АС образует с основанием AD и боковой стороной АВ углы, равные 30° и 45° соответственно. Ответ дайте в градусах.
Боковая сторона равнобедренного треугольника равна 25, а основание равно 30. Найдите площадь этого треугольника.
Периметр треугольника равен 54, одна из сторон равна 15,
а радиус вписанной в него окружности равен 1. Найдите площадь этого треугольника.
Основания BC и AD трапеции ABCD равны соответственно 5 и 20, BD=10. Докажите, что треугольники CBD и ADB подобны.



Комментарии:
(2022-10-12 20:00:28) : Площадь параллелограмма равна 48 а две стороны равны 8 и 16 Найдите его высоту в ответе укажите меньшую высоту