Биссектриса угла A параллелограмма ABCD пересекает сторону BC в точке K. Найдите периметр параллелограмма, если BK=8, CK=13.
Периметр
параллелограмма:
P=AB+BC+CD+AD
AB=CD и BC=AD (по
свойству параллелограмма)
P=AB+BC+AB+BC=2(AB+BC)
∠DAK=∠AKB (т.к. это
накрест-лежащие углы).
Следовательно ∠AKB=∠KAB (т.к. AK -
биссектриса)
Получается, что треугольник ABK -
равнобедренный (по
свойству равнобедренного треугольника).
Тогда AB=BK=8
P=2(AB+BC)=2(AB+BK+CK)=2(8+8+13)=2*29=58
Ответ: 58
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC известно, что AB=6, BC=10, sin∠ABC=1/3. Найдите площадь треугольника ABC.
Основание AC равнобедренного треугольника ABC равно 10. Окружность радиуса 8 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
Окружность с центром в точке O описана около равнобедренного треугольника ABC, в котором AB=BC и ∠ABC=177°. Найдите величину угла BOC. Ответ дайте в градусах.
Сторона ромба равна 34, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?
Боковая сторона трапеции равна 5, а один из прилегающих к ней углов равен 30°. Найдите площадь трапеции, если её основания равны 3 и 9.
Комментарии: