Площадь равнобедренного треугольника равна 1600√
Обозначим ключевые точки как показано на рисунке и проведем
высоту BD.
Высота BD так же является и
медианой, и
биссектрисой (по
третьему свойству равнобедренного треугольника).
Площадь треугольника ABC SABC=(1/2)AC*BD
Так как BD -
медиана, то AC=2AD
Тогда:
SABC=(1/2)2AD*BD=AD*BD
Так как BD еще и
биссектриса, то ∠ABD=∠ABC/2=60°
AD=AB*sin(∠ABD)=AB*sin60°
BD=AB*cos(∠ABD)=AB*cos60°
Тогда:
SABC=AB*sin60°*AB*cos60°=AB2(√
AB2/4=1600
AB2=1600*4
AB=40*2=80
Ответ: 80
Поделитесь решением
Присоединяйтесь к нам...
Тангенс острого угла прямоугольной трапеции равен 5/3. Найдите её большее основание, если меньшее основание равно высоте и равно 40.
Основание AC равнобедренного треугольника ABC равно 12. Окружность радиуса 9 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
Точка О – центр окружности, /BAC=10° (см. рисунок). Найдите величину угла BOC (в градусах).
Длина хорды окружности равна 130, а расстояние от центра окружности до этой хорды равно 72. Найдите диаметр окружности.
На отрезке AB выбрана точка C так, что AC=75 и BC=10. Построена окружность с центром A, проходящая через C. Найдите длину касательной, проведённой из точки B к этой окружности.
Комментарии: