ОГЭ, Математика. Геометрия: Задача №232A5F | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №232A5F

Задача №582 из 1087
Условие задачи:

Площадь равнобедренного треугольника равна 1963. Угол, лежащий напротив основания, равен 120°. Найдите длину боковой стороны.

Решение задачи:

Обозначим ключевые точки как показано на рисунке и проведем высоту BD.
Высота BD так же является и медианой, и биссектрисой (по третьему свойству равнобедренного треугольника).
Площадь треугольника ABC SABC=(1/2)AC*BD
Так как BD - медиана, то AC=2AD
Тогда:
SABC=(1/2)2AD*BD=AD*BD
Так как BD еще и биссектриса, то ∠ABD=∠ABC/2=60°
AD=AB*sin(∠ABD)=AB*sin60°
BD=AB*cos(∠ABD)=AB*cos60°
Тогда:
SABC=AB*sin60°*AB*cos60°=AB2(3/2)*(1/2)=AB23/4=1963
AB2/4=196
AB2=784
AB=28
Ответ: 28

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №4BB263

Укажите номера верных утверждений.
1) Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
2) Вертикальные углы равны.
3) Любая биссектриса равнобедренного треугольника является его медианой.



Задача №936640

Основания трапеции равны 11 и 19, а высота равна 9. Найдите среднюю линию этой трапеции.



Задача №09817E

Точка O – центр окружности, на которой лежат точки S, T и V таким образом, что OSTV – ромб. Найдите угол STV. Ответ дайте в градусах.



Задача №0DDD96

Площадь прямоугольного треугольника равна 8823. Один из острых углов равен 60°. Найдите длину катета, прилежащего к этому углу.



Задача №8BFA99

В треугольнике ABC угол C равен 90°, sinA=0,4, AC=21. Найдите AB.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Биссектриса угла - луч с началом в вершине угла, делящий угол на два равных угла.

Медиана треугольника - отрезок внутри треугольника, соединяющий вершину треугольника с серединой противоположной стороны, а также прямая, содержащая этот отрезок.

Высота треугольника — перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону. В зависимости от типа треугольника высота может содержаться внутри треугольника (для остроугольного треугольника), совпадать с его стороной (являться катетом прямоугольного треугольника) или проходить вне треугольника.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика