Боковые стороны AB и CD трапеции ABCD равны соответственно 40 и 41, а основание BC равно 16. Биссектриса угла ADC проходит через середину стороны AB. Найдите площадь трапеции.
Проведем отрезок, параллельный основаниям, как показано на рисунке.
EF -
средняя линия трапеции, так как соединяет середины боковых сторон трапеции (по
теореме Фалеса).
∠ADE=∠DEF (так как это
накрест-лежащие углы при параллельных прямых EF и AD и секущей ED).
Получается, что ∠DEF=∠EDF (так как DE -
биссектриса).
Значит треугольник EFD -
равнобедренный (по
свойству равнобедренного треугольника).
Следовательно, EF=FD (по
определению).
EF=FD=CD/2=41/2=20,5
EF=(BC+AD)/2=20,5
(16+AD)/2=20,5
16+AD=41
AD=25
Дальше площадь трапеции можно найти разными способами:
1) Вычислить
высоту трапеции. И вычислить площадь через высоту
2) Вычислить площадь через стороны трапеции.
Первый вариант
Проведем
высоты как показано на рисунке.
MN=BC=16 (т.к. BCNM -
прямоугольник).
BM=CN=h
Обозначим AM как x, для удобства.
AD=AM+MN+ND
25=x+16+ND
ND=9-x
Для треугольника ABM запишем
теорему Пифагора:
AB2=h2+x2
402=h2+x2
h2=1600-x2
Для треугольника CDN запишем
теорему Пифагора:
CD2=h2+ND2
412=h2+(9-x)2
1681=h2+(9-x)2
Подставляем вместо h2 значение из первого уравнения:
1681=1600-x2+(9-x)2
1681-1600=-x2+92-2*9*x-x2
81=92-2*9*x
81=81-18x
18x=0
x=0, получается, что BM совпадает со стороной AB, т.е. AB является высотой трапеции.
Тогда площадь трапеции равна:
S=AB(AD+BC)/2=40(25+16)/2=20*41=820
Второй вариант
Площадь трапеции можно найти по
формуле.
Ответ: 820
Поделитесь решением
Присоединяйтесь к нам...
Боковые стороны AB и CD трапеции ABCD равны соответственно 20 и 25, а основание BC равно 5. Биссектриса угла ADC проходит через середину стороны AB. Найдите площадь трапеции.
Пол комнаты, имеющей форму прямоугольника со сторонами 7 м и 9 м, требуется покрыть паркетом из прямоугольных дощечек со сторонами 10 см и 20 см. Сколько потребуется таких дощечек?
В параллелограмме АВСD точки E, F, K и М лежат на его сторонах, как показано на рисунке, причём СF = АM, BE = DK. Докажите, что EFKM — параллелограмм.
Площадь прямоугольного треугольника равна 50√
Высоты остроугольного треугольника ABC, проведённые из точек B и C, продолжили до пересечения с описанной окружностью в точках B1 и C1. Оказалось, что отрезок B1C1 проходит через центр описанной окружности. Найдите угол BAC.
Комментарии:
(2018-02-21 21:50:25) Администратор: Ксения, если я правильно понял, то речь идет о третьей строке снизу. Там скобка равна нулю, поэтому и ()^2 тоже исчезло.
(2018-02-15 15:37:19) ксения: в конце после раскрытия скобок ккуда делся x^2?
(2016-10-14 09:06:23) Администратор: НАТАЛЬЯ, эту формулу надо запомнить, вывести ее довольно сложно.
(2016-10-13 18:47:21) НАТАЛЬЯ: КАК ПОЛУЧИТЬ ФОРМУЛУ ПЛОЩАДИ ТРАПЕЦИИ ЧЕРЕЗ СТОРОНЫ?