ОГЭ, Математика. Геометрия: Задача №07378B | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Проведем высоту CF.
Рассмотрим треугольники ABE и DCF.
∠BAE=∠CDF=45° (по свойству равнобедренной трапеции).
∠BEA=∠CFD=90° (так как BE и CF - высоты).
Используя теорему о сумме углов треугольника, получаем, что: ∠EBA=∠FCD
AB=CD (по определению равнобедренной трапеции).
Следовательно, данные треугольники равны (по второму признаку равенства треугольников).
Значит, AE=FD.
Рассмотрим треугольник ABE.
По определению tg∠BAE=BE/AE
tg45°=5/AE=1 (по таблице)
AE=5
EF=BC=6 (так как BCFE - прямоугольник)
AD=AE+EF+FD=5+6+5=16
Ответ: AD=16

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №E8FC9F

Найдите площадь параллелограмма, изображённого на рисунке.



Задача №26EFF5

На какой угол (в градусах) поворачивается минутная стрелка, пока часовая проходит 21°?



Задача №20E8E9

Основания трапеции равны 3 и 9, а высота равна 5. Найдите среднюю линию этой трапеции.



Задача №13AC23

Сторона AB параллелограмма ABCD вдвое больше стороны AD. Точка L — середина стороны AB. Докажите, что DL — биссектриса угла ADC.



Задача №584A28

В ромбе ABCD угол ABC равен 72°. Найдите угол ACD. Ответ дайте в градусах.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Биссектриса угла - луч с началом в вершине угла, делящий угол на два равных угла.

Медиана треугольника - отрезок внутри треугольника, соединяющий вершину треугольника с серединой противоположной стороны, а также прямая, содержащая этот отрезок.

Высота треугольника — перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону. В зависимости от типа треугольника высота может содержаться внутри треугольника (для остроугольного треугольника), совпадать с его стороной (являться катетом прямоугольного треугольника) или проходить вне треугольника.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика