На стороне BC остроугольного треугольника ABC (AB≠AC) как на диаметре построена полуокружность, пересекающая высоту AD в точке M, AD=15, MD=3, H — точка пересечения высот треугольника ABC. Найдите AH.
Проведем отрезки CM и MB.
∠BMC является
вписанным в окружность и опирается на дугу в 180° (так как BC - диаметр окружности).
Следовательно, ∠BMC=90° (по
теореме о вписанном угле).
Получается, что треугольник MBC -
прямоугольный.
Рассмотрим треугольники MBC и MBD.
∠BMC=∠BDM=90°
∠MBD - общий.
Следовательно, данные треугольники
подобны (по
первому признаку подобия).
Рассмотрим треугольники MBC и MDС.
∠BMC=∠MDC=90°
∠MCD - общий.
Следовательно, данные треугольники
подобны (по
первому признаку подобия).
Значит треугольник MBD подобен треугольнику MDС.
Тогда: MD/BD=CD/MD
MD2=CD*BD
32=CD*BD
9=CD*BD
Вернемся к первоначальному рисунку и рассмотрим треугольники AHE и BHD.
∠AEH=∠BDH=90°
∠AHE=∠BHD (так как это
вертикальные углы).
Следовательно, используя
теорему о сумме углов треугольника, получаем, что ∠HAE=∠HBD.
Рассмотрим треугольники ADC и BDH.
∠HAE=∠HBD (как мы уже выяснили).
∠ADC=∠BDH=90°
Следовательно, данные треугольники
подобны (по
первому признаку подобия).
Тогда:
AD/BD=DC/DH
AD*DH=BD*DC=9 (см. выше).
DH=9/AD=9/15=0,6
AH=AD-DH=15-0,6=14,4
Ответ: AH=14,4
Поделитесь решением
Присоединяйтесь к нам...
Дан правильный шестиугольник. Докажите, что если последовательно соединить отрезками середины его сторон, то получится правильный шестиугольник.
Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=7 и MB=17. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.
В треугольнике ABC AC=BC. Внешний угол при вершине B равен 163°. Найдите угол C. Ответ дайте в градусах.
Косинус острого угла А треугольника равен . Найдите sinA.
Высота AH ромба ABCD делит сторону CD на отрезки DH=24 и CH=2. Найдите высоту ромба.
Комментарии:
(2015-05-12 17:35:01) : Спасибь