В трапеции ABCD основания AD и BC равны соответственно 34 и 9, а сумма углов при основании AD равна 90°. Найдите радиус окружности, проходящей через точки A и B и касающейся прямой CD, если AB=10.
Продлим стороны AB и CD до пересечения друг с другом.
Рассмотрим треугольник AED.
По
теореме о сумме углов треугольника:
180°=∠EDA+∠DAE+∠AED
180°=90°+∠AED
∠AED=90°
Следовательно треугольник AED -
прямоугольный.
Рассмотрим треугольники AED и BEC.
∠AED - общий
∠EBC=∠EAD (т.к. это
соответственные углы)
Треугольники AED и BEC
подобны (по
первому признаку подобия треугольников).
Тогда по
определению подобия:
AD/BC=AE/BE
AD/BC=(AB+BE)/BE
34/9=(10+BE)/BE
34BE/9=10+BE
25BE/9=10
BE=90/25=3,6
Точка F - точка касания прямой CD и окружности.
По
теореме о касательной и секущей:
EF2=BE*AE=BE*(AB+BE)=3,6(10+3,6)=48,96
EF=√
Рассмотрим треугольник EOK.
О - центр окружности
OB - радиус окружности
OK -
серединный перпендикуляр к
хорде AB (
третье свойство хорды)
OK=EF (т.к. KEFO -
прямоугольник)
KB=AB/2 (т.к. OK -
серединный перпендикуляр)
По
теореме Пифагора:
OB2=OK2+KB2
OB2=(√
OB2=48,96+25=73,96
OB=8,6
Ответ: R=8,6
Поделитесь решением
Присоединяйтесь к нам...
На каком расстоянии (в метрах) от фонаря стоит человек ростом 2 м, если длина его тени равна 1 м, высота фонаря 9 м?
В трапеции ABCD AB=CD, /BDA=67° и /BDC=28°. Найдите угол ABD. Ответ дайте в градусах.
Найдите площадь треугольника, изображённого на рисунке.
Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=2, а расстояние от точки K до стороны AB равно 1.
Прямая касается окружности в точке K. Центр окружности – точка O. Хорда KM образует с касательной угол, равный 40°. Найдите величину угла KOM. Ответ дайте в градусах.
Комментарии: