В треугольнике ABC угол A равен 45°, угол B равен 30°, BC=8√2. Найдите AC.
Воспользуемся теоремой синусов:
По
таблице определяем значения
синусов:
Избавляемся от деления на дробь:
Сокращаем √2:
2AC=16 |:2
AC=8
Ответ: 8
Поделитесь решением
Присоединяйтесь к нам...
На клетчатой бумаге с размером клетки 1×1 изображён прямоугольный треугольник. Найдите длину его большего катета.
Укажите номера верных утверждений.
1) Медиана равнобедренного треугольника, проведённая из вершины угла, противолежащего основанию, делит этот угол пополам.
2) Не существует прямоугольника, диагонали которого взаимно перпендикулярны.
3) В плоскости для точки, лежащей вне круга, расстояние до центра круга больше его радиуса.
На окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что ∠NBA=60°. Найдите угол NMB. Ответ дайте в градусах.
Точка O – центр окружности, на которой лежат точки S, T и V таким образом, что OSTV – ромб. Найдите угол STV. Ответ дайте в градусах.
Точка О – центр окружности, /BOC=110° (см. рисунок). Найдите величину угла BAC (в градусах).
Комментарии: