В треугольнике ABC угол A равен 45°, угол B равен 30°, BC=8√2. Найдите AC.
Воспользуемся теоремой синусов:
По
таблице определяем значения
синусов:
Избавляемся от деления на дробь:
Сокращаем √2:
2AC=16 |:2
AC=8
Ответ: 8
Поделитесь решением
Присоединяйтесь к нам...
Катеты прямоугольного треугольника равны 20 и 15. Найдите синус наименьшего угла этого треугольника.
В угол C величиной 83° вписана окружность, которая касается сторон угла в точках A и B. Найдите угол AOB. Ответ дайте в градусах.
Окружности с центрами в точках I и J пересекаются в точках A и B, причём точки I и J лежат по одну сторону от прямой AB. Докажите, что AB⊥IJ.
В треугольнике ABC AB=BC, а высота AH делит сторону BC на отрезки BH=52 и CH=13. Найдите cosB.
Длина хорды окружности равна 60, а расстояние от центра окружности до этой хорды равно 40. Найдите диаметр окружности.
Комментарии: