В треугольнике ABC угол A равен 45°, угол B равен 30°, BC=8√2. Найдите AC.
Воспользуемся теоремой синусов:
По
таблице определяем значения
синусов:
Избавляемся от деления на дробь:
Сокращаем √2:
2AC=16 |:2
AC=8
Ответ: 8
Поделитесь решением
Присоединяйтесь к нам...
Диагонали AC и BD трапеции ABCD с основаниями BC и AD пересекаются в точке O, BC=11, AD=15, AC=52. Найдите AO.
Сторона ромба равна 32, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?
Диагональ AC параллелограмма ABCD образует с его сторонами углы, равные 45° и 40°. Найдите больший угол параллелограмма.
Точка О – центр окружности, /BOC=110° (см. рисунок). Найдите величину угла BAC (в градусах).
Окружности радиусов 25 и 100 касаются внешним образом. Точки A и B лежат на первой окружности, точки C и D — на второй. При этом AC и BD — общие касательные окружностей. Найдите расстояние между прямыми AB и CD.
Комментарии: