Точки M и N являются серединами сторон AB и BC треугольника ABC, AC=24. Найдите MN.
MN - это
средняя линия треугольника ABC (по определению).
Тогда по
теореме о средней линии:
MN=AC/2=24/2=12
Ответ: 12
Поделитесь решением
Присоединяйтесь к нам...
Четырёхугольник ABCD со сторонами AB=19 и CD=22 вписан в окружность. Диагонали AC и BD пересекаются в точке K, причём ∠AKB=60°. Найдите радиус окружности, описанной около этого четырёхугольника.
В трапецию, сумма длин боковых сторон которой равна 18, вписана окружность. Найдите длину средней линии трапеции.
В треугольнике со сторонами 15 и 3 проведены высоты к этим сторонам. Высота, проведённая к первой стороне, равна 1. Чему равна высота, проведённая ко второй стороне?
Сторона квадрата равна 4√2. Найдите радиус окружности, описанной около этого квадрата.
В прямоугольном треугольнике гипотенуза равна 70, а один из острых углов равен 45°. Найдите площадь треугольника.
Комментарии: