В треугольнике со сторонами 2 и 4 проведены высоты к этим сторонам. Высота, проведённая к первой стороне, равна 2. Чему равна высота, проведённая ко второй стороне?
Пусть AB - сторона длиной 2, а AC - сторона длиной 4.
Задачу легко решить через площадь треугольника.
Площадь треугольника равна половине произведения
высоты на сторону, к которой
высота проведена. Следовательно:
S=AB*CD/2=2*2/2=2
Так же: S=AC*BE/2
2=4*BE/2
4=4*BE
BE=1
Ответ: 1
Поделитесь решением
Присоединяйтесь к нам...
Точка О – центр окружности, /ACB=70° (см. рисунок). Найдите величину угла AOB (в градусах).
Вершины треугольника делят описанную около него окружность на три дуги, длины которых относятся как 3:4:11. Найдите радиус окружности, если меньшая из сторон равна 14.
К окружности с центром в точке O проведены касательная AB и секущая AO. Найдите радиус окружности, если AB=21, AO=75.
В треугольнике ABC угол C равен 120°, AB=22√3. Найдите радиус окружности, описанной около этого треугольника.
Медиана BM треугольника ABC равна 3 и является диаметром окружности, пересекающей сторону BC в её середине. Найдите диаметр описанной окружности треугольника ABC.
Комментарии: