В треугольнике со сторонами 2 и 4 проведены высоты к этим сторонам. Высота, проведённая к первой стороне, равна 2. Чему равна высота, проведённая ко второй стороне?
Пусть AB - сторона длиной 2, а AC - сторона длиной 4.
Задачу легко решить через площадь треугольника.
Площадь треугольника равна половине произведения
высоты на сторону, к которой
высота проведена. Следовательно:
S=AB*CD/2=2*2/2=2
Так же: S=AC*BE/2
2=4*BE/2
4=4*BE
BE=1
Ответ: 1
Поделитесь решением
Присоединяйтесь к нам...
В трапецию, сумма длин боковых сторон которой равна 16, вписана окружность. Найдите длину средней линии трапеции.
Вершины треугольника делят описанную около него окружность на три дуги, длины которых относятся как 3:7:8. Найдите радиус окружности, если меньшая из сторон равна 20.
Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении 26:1, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой эта биссектриса проведена, равна 7.
В окружности с центром в точке О проведены диаметры AD и BC, угол ABO равен 55°. Найдите величину угла ODC.
Известно, что около четырёхугольника ABCD можно описать окружность и что продолжения сторон AB и CD четырёхугольника пересекаются в точке M. Докажите, что треугольники MBC и MDA подобны.
Комментарии: