Найдите площадь прямоугольного треугольника, если его катет и гипотенуза равны соответственно 36 и 39.
Площадь
прямоугольного треугольника равна половине произведения катетов.
BC - катет длиной 36.
По
теореме Пифагора найдем второй катет:
AB2=AC2+BC2
392=AC2+362
1521=AC2+1296
225=AC2
AC=15
S=AC*BC/2=15*36/2=15*18=270
Ответ: S=270
Поделитесь решением
Присоединяйтесь к нам...
Какие из данных утверждений верны? Запишите их номера.
1) На плоскости существует единственная точка, равноудалённая от концов отрезка.
2) Центром вписанной в треугольник окружности является точка пересечения его биссектрис.
3) Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и углу другого прямоугольного треугольника, то такие треугольники равны.
В треугольнике ABC отмечены середины M и N сторон BC и AC соответственно. Площадь треугольника CNM равна 67. Найдите площадь четырёхугольника ABMN.
Радиус окружности, описанной около равностороннего треугольника, равен 6. Найдите высоту этого треугольника.
В трапеции ABCD AB=CD, ∠BDA=67° и ∠BDC=28°. Найдите угол ABD. Ответ дайте в градусах.
Окружность с центром на стороне AC треугольника ABC проходит через вершину C и касается прямой AB в точке B. Найдите диаметр окружности, если AB=15, AC=25.
Комментарии:
(2017-01-09 21:30:31) Администратор: Гоша, Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, пишите, обязательно добавим.
(2017-01-06 19:02:48) Гоша: Найдите площадь прямоугольного треугольника,если его катет и гипотенуза равны соответственно 18 и 30