В треугольнике ABC угол C равен 90°, sinA=9/10, AC=√
По
определению: sinA=BC/AB => BC=AB*sinA=AB*9/10=0,9AB
По
теореме Пифагора:
AB2=BC2+AC2
AB2=(0,9AB)2+(√
AB2-(0,9AB)2=19
AB2(1-0,92)=19
AB2*0,19=19
AB2=100
AB=10
Ответ: AB=10
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC угол C равен 90°, sinA=4/5, AC=9. Найдите AB.
Основание AC равнобедренного треугольника ABC равно 6. Окружность радиуса 4,5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
Центральный угол AOB равен
60°. Найдите длину хорды AB, на которую он опирается, если радиус окружности равен 7.
Найдите тангенс угла С треугольника ABC, изображённого на рисунке.
В треугольнике ABC угол C равен 90°, BC=5, AC=2.
Найдите tgB.
Комментарии: