В треугольнике ABC BM – медиана и BH – высота. Известно, что AC=216, HC=54 и ∠ACB=40°. Найдите угол AMB. Ответ дайте в градусах.
Так как BM -
медиана, значит AM=MC=AC/2=216/2=108
Рассмотрим треугольник MBC.
MH=MC-HC=108-54=54, т.е. получается, что MH=HC.
BH для этого треугольника получается не только
высота, но и
медиана. Это
свойство
равнобедренного треугольника.
По
свойству равнобедренного треугольника: ∠BMC=∠ACB=40°.
∠AMB=180°-∠BMC=180°-40°=140° (т.к. он
смежный)
Ответ: ∠AMB=140°
Поделитесь решением
Присоединяйтесь к нам...
Какое из следующих утверждений верно?
1) Площадь квадрата равна произведению двух его смежных сторон.
2) Диагональ трапеции делит её на два равных треугольника.
3) Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника, то такие треугольники равны.
Найдите тангенс угла А треугольника ABC, изображённого на рисунке.
В равнобедренной трапеции основания равны 4 и 8, а один из углов между боковой стороной и основанием равен 45°. Найдите площадь трапеции.
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках K и M соответственно. Найдите AC, если BK:KA=2:3, KM=14.
Окружности радиусов 45 и 90 касаются внешним образом. Точки A и B лежат на первой окружности, точки C и D — на второй. При этом AC и BD — общие касательные окружностей. Найдите расстояние между прямыми AB и CD.
Комментарии:
(2015-04-15 16:12:02) Администратор: Ольга.olg1851@yandex.ru, напишите, пожалуйста номер задачи (на fipi.ru) и страницу, что бы эту задачу можно было найти.
(2015-04-15 12:38:00) Администратор: Ольга.olg1851@yandex.ru, напишите, пожалуйста номер задачи (на fipi.ru) и страницу, что бы эту задачу можно было найти.
(2015-04-15 12:36:11) Администратор: Ольга, спасибо за найденную опечатку, исправлено.
(2015-04-15 10:59:55) Ольга.olg1851@yandex.ru: задачу решите пожалуйста. На стороне АВ треугольника АВС взята точка D так, что окружность, проходящая через точки А,С и D, касается прямой ВС. Найти АD, если АС=15, ВС=18 и СD= 10. Поиск по славам ничего не дал, хотя задача ФИПИ математика ОГЭ 2015. Спасибо
(2015-04-15 10:52:50) Ольга: исправьте ошибку в решении 374 МС = НС? МН=НС