В треугольнике ABC BM – медиана и BH – высота. Известно, что AC=216, HC=54 и ∠ACB=40°. Найдите угол AMB. Ответ дайте в градусах.
Так как BM -
медиана, значит AM=MC=AC/2=216/2=108
Рассмотрим треугольник MBC.
MH=MC-HC=108-54=54, т.е. получается, что MH=HC.
BH для этого треугольника получается не только
высота, но и
медиана. Это
свойство
равнобедренного треугольника.
По
свойству равнобедренного треугольника: ∠BMC=∠ACB=40°.
∠AMB=180°-∠BMC=180°-40°=140° (т.к. он
смежный)
Ответ: ∠AMB=140°
Поделитесь решением
Присоединяйтесь к нам...
Расстояние от точки пересечения диагоналей ромба до одной из его сторон равно 17, а одна из диагоналей ромба равна 68. Найдите углы ромба.
Какие из данных утверждений верны? Запишите их номера.
1) Если при пересечении двух прямых третьей прямой накрест лежащие углы равны, то прямые параллельны.
2) Диагональ трапеции делит её на два равных треугольника.
3) Если в ромбе один из углов равен
90°, то такой ромб — квадрат.
Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 45° и 120°, а CD=40.
Диагонали AC и BD прямоугольника ABCD пересекаются
в точке O, BO=37, AB=56. Найдите AC.
В треугольнике ABC угол C равен 90°, BC=5, AC=3.
Найдите tgB.
Комментарии:
(2015-04-15 16:12:02) Администратор: Ольга.olg1851@yandex.ru, напишите, пожалуйста номер задачи (на fipi.ru) и страницу, что бы эту задачу можно было найти.
(2015-04-15 12:38:00) Администратор: Ольга.olg1851@yandex.ru, напишите, пожалуйста номер задачи (на fipi.ru) и страницу, что бы эту задачу можно было найти.
(2015-04-15 12:36:11) Администратор: Ольга, спасибо за найденную опечатку, исправлено.
(2015-04-15 10:59:55) Ольга.olg1851@yandex.ru: задачу решите пожалуйста. На стороне АВ треугольника АВС взята точка D так, что окружность, проходящая через точки А,С и D, касается прямой ВС. Найти АD, если АС=15, ВС=18 и СD= 10. Поиск по славам ничего не дал, хотя задача ФИПИ математика ОГЭ 2015. Спасибо
(2015-04-15 10:52:50) Ольга: исправьте ошибку в решении 374 МС = НС? МН=НС