В треугольнике ABC известно, что AB=BC, ∠ABC=102°. Найдите угол BCA. Ответ дайте в градусах.
Так как, по условию, AB=BC, то данный треугольник называется равнобедренным.
По
первому свойству равнобедренного треугольника углы, противолежащие равным сторонам, равны между собой (обозначим их α).
Тогда по теореме о сумме углов треугольника:
180°=∠ABC+∠BCA+∠CAB
180°=102°+∠α+∠α
180°-102°=2∠α
78°=2∠α
∠α=78°/2=39°
Ответ: 39
Поделитесь решением
Присоединяйтесь к нам...
Тангенс острого угла прямоугольной трапеции равен 5/3. Найдите её большее основание, если меньшее основание равно высоте и равно 40.
Боковые стороны AB и CD трапеции ABCD равны соответственно 12 и 20, а основание BC равно 2. Биссектриса угла ADC проходит через середину стороны AB. Найдите площадь трапеции.
В треугольнике ABC известно, что AB=BC, ∠ABC=122°. Найдите угол BCA. Ответ дайте в градусах.
Сторона BC параллелограмма ABCD вдвое больше стороны AB.
Точка K — середина стороны BC. Докажите, что AK — биссектриса
угла BAD.
На окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что ∠NBA=69°. Найдите угол NMB. Ответ дайте в градусах.
Комментарии: