ОГЭ, Математика. Геометрия: Задача №F4E03B | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Вариант №1 (Предложил пользователь Людмила)
По второму свойству вписанной в четырехугольник окружности:
AB+CD=BC+AD
7+14=10+AD
AD=7+14-10=11
Ответ: 11


Вариант №2
Проведем отрезки из центра окружности к точкам касания со сторонами четырехугольника.
AB и AD - это касательные к окружности.
Следовательно, по второму свойству касательной:
AE=AF, обозначим эти отрезки как "а".
Аналогичная ситуация и с остальными касательными, поэтому обозначим соответствующие отрезки как "b", "c", "d", как показано на рисунке.
Получается:
a+b=AB=7
b+c=BC=10
c+d=CD=14
А нам надо найти a+d.
Вычтем из первого равенства второе, чтобы "избавиться" от b:
(a+b)-(b+c)=7=-14
a+b-b-c=7-10
a-c=-3
А теперь прибавим третье равенство, чтобы "избавиться" от с:
(a-c)+(c+d)=-3+14
a-c+c+d=11
a+d=11 - это и есть AD.
Ответ: 11

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №510B5D

В треугольнике ABC известно, что AB=6, BC=12, sin∠ABC=1/4. Найдите площадь треугольника ABC.



Задача №B711E6

В параллелограмме АВСD проведены перпендикуляры ВЕ и DF к диагонали АС (см. рисунок). Докажите, что отрезки ВF и DЕ равны.



Задача №054B6B

ABCDEFGH – правильный восьмиугольник. Найдите угол EFG. Ответ дайте в градусах.



Задача №1BD0AE

Диагональ прямоугольника образует угол 51° с одной из его сторон. Найдите угол между диагоналями этого прямоугольника. Ответ дайте в градусах.



Задача №48FE5E

На стороне АС треугольника АВС выбраны точки D и E так, что отрезки AD и CE равны (см. рисунок). Оказалось, что углы АEB и BDC тоже равны. Докажите, что треугольник АВС — равнобедренный.

Комментарии:


(2017-05-14 20:24:54) Администратор: Людмила, спасибо большое за Ваше решение. Опубликовано от Вашего имени.
(2017-05-13 18:58:46) Людмила: Можно использовать теорему о том, что окружность можно вписать в четырехугольник тогда и только тогда, когда суммы его противоположных сторон равны. AB+CD=BC+AD, 7+14=10+AD

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Свойства касательной к окружности:
1) Касательная к окружности перпендикулярна к радиусу, проведённому в точку касания.

2) Отрезки касательных к окружности, проведённые из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика