На отрезке AB выбрана точка C так, что AC=14 и BC=36. Построена окружность с центром A, проходящая через C. Найдите длину касательной, проведённой из точки B к этой окружности.
Проведем отрезок AD, где D - точка касания
окружности и
касательной.
AD перпендикулярен к
касательной (по
свойству касательной), т.е. угол между AD и
касательной DB равен 90°.
Следовательно, треугольник ABD -
прямоугольный.
AD=AC=14 (т.к. это радиусы окружности и, соответственно, равны друг другу).
По
теореме Пифагора: AB2=AD2+BD2
(AC+BC)2=AD2+BD2
(14+36)2=142+BD2
2500=196+BD2
BD2=2304
BD=48
Ответ: длина касательной равна 48.
Поделитесь решением
Присоединяйтесь к нам...
Катеты прямоугольного треугольника равны 12 и 16. Найдите гипотенузу этого треугольника.
Площадь прямоугольного треугольника равна 8√
Какова длина (в метрах) лестницы, которую прислонили к дереву, если верхний её конец находится на высоте 1,6 м над землёй, а нижний отстоит от ствола дерева на 1,2 м?
Отрезки AB и CD являются хордами окружности. Найдите расстояние от центра окружности до хорды CD, если AB=20, CD=48, а расстояние от центра окружности до хорды AB равно 24.
В треугольнике ABC угол C равен 90°, AC=6, AB=10. Найдите sinB.
Комментарии: