На стороне AB треугольника ABC взята такая точка D так, что окружность, проходящая через точки A, C и D, касается прямой BC. Найдите AD, если AC=40, BC=45 и CD=24.
Прямая и окружность могут располагаться относительно друг друга в трех вариантах:
1) Не пересекаться, то есть не иметь ни одной общей точки.
2) Касаться, то есть иметь только одну общую точку, тогда прямая называется
касательной к окружности.
3) Пересекаться, то есть иметь две общие точки.
В условии задачи сказано, что окружность проходит через точку С и касается прямой ВС. Значит прямая ВС кроме точки касания других общих точек с окружностью иметь не может, следовательно, окружность касается с прямой ВС в точке С (как показано на рисунке).
Рассмотрим треугольники ABC и CDB.
∠B - общий
∠DAC является
вписанным в окружность и опирается на дугу CD. Т.е. равен половине ее градусной меры.
∠BCD обхватывает дугу CD как
касательная и
хорда и тоже равен половине градусной меры дуги CD (по
четвертому свойству углов).
Следовательно, углы DAC и BCD равны.
Тогда, по
первому признаку подобия треугольников, эти треугольники
подобны.
Следовательно:
AC/CD=BC/BD=AB/BC
AC/CD=BC/BD
40/24=45/BD =>BD=24*45/40=27
BC/BD=AB/BC
45/27=AB/45 => AB=45*45/27=75
AD=AB-BD=75-27=48
Ответ: AD=48
Поделитесь решением
Присоединяйтесь к нам...
Диагональ BD параллелограмма ABCD образует с его сторонами углы, равные 85° и 30°. Найдите меньший угол параллелограмма.
В равнобедренную трапецию, периметр которой равен 180, а площадь равна 1620, можно вписать окружность. Найдите расстояние от точки пересечения диагоналей трапеции до её меньшего основания.
Какие из данных утверждений верны? Запишите их номера.
1) Если три угла одного треугольника соответственно равны трём углам другого треугольника, то такие треугольники подобны.
2) В любой четырёхугольник можно вписать окружность.
3) Центром описанной окружности треугольника является точка пересечения серединных перпендикуляров к его сторонам.
На отрезке AB выбрана точка C так, что AC=12 и BC=3. Построена окружность с центром A, проходящая через C. Найдите длину отрезка касательной, проведённой из точки B к этой окружности.
Основание AC равнобедренного треугольника ABC равно 4. Окружность радиуса 2,5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
Комментарии:
(2014-05-29 17:11:15) Екатерина: Спасибо большое:)
(2014-05-29 16:56:24) Администратор: Екатерина, перейдите по ссылке и посмотрите, там все свойства пронумерованы.
(2014-05-29 16:54:41) Екатерина: Спасибо большое за сайт!!! Не подскажите, что за 4 свойство углов?