В трапеции ABCD AB=CD, AC=AD и ∠ABC=123°. Найдите угол CAD. Ответ дайте в градусах.
Так как AB=CD, значит трапеция ABCD -
равнобедренная.
Тогда по
свойству равнобедренной трапеции ∠ABC=∠BCD=123° и ∠CDA=∠DAB.
Вспомнив, что сумма углов выпуклого n-угольника вычисляется по формуле (n-2)180°, получим, что сумма углов трапеции равна (4-2)180°=360°.
Тогда ∠ABC+∠BCD+∠CDA+∠DAB=360°
123°+123°+∠CDA+∠DAB=360°
∠CDA+∠DAB=360°-123°-123°=114°
∠CDA=∠DAB=114°/2=57°
Рассмотрим треугольник ACD.
Так как AC=AD, то данный треугольник -
равнобедренный.
Следовательно, по
свойству равнобедренного треугольника
∠CDA=∠DCA=57°
∠BCA=∠BCD-∠DCA=123°-57°=66°
∠BCA=∠CAD=66° (т.к. они
накрест-лежащие для параллельных прямых AD и BC).
Ответ: 66
Поделитесь решением
Присоединяйтесь к нам...
Диагонали AC и BD трапеции ABCD с основаниями BC и AD пересекаются в точке O, BC=3, AD=7, AC=20. Найдите AO.
В параллелограмме ABCD точка E — середина стороны CD. Известно, что EA=EB. Докажите, что данный параллелограмм — прямоугольник.
Какие из следующих утверждений верны?
1) Для точки, лежащей на окружности, расстояние до центра окружности равно радиусу.
2) Площадь трапеции равна произведению основания трапеции на высоту.
3) Треугольника со сторонами 1, 2, 4 не существует.
В ответ запишите номера выбранных утверждений без пробелов, запятых и других дополнительных символов.
Диагональ AC параллелограмма ABCD образует с его сторонами углы, равные 45° и 25°. Найдите больший угол параллелограмма.
Диагонали AC и BD прямоугольника ABCD пересекаются в точке O, BO=37, AB=56. Найдите AC.
Комментарии:
(2014-06-04 08:57:41) учитель математики: А меж тем эта задача была в ГИА-2014 в варианте 704
(2014-06-03 09:55:32) Администратор: Согласен, я даже не могу нарисовать рисунок, чтобы он полностью удовлетворял условию...
(2014-06-03 06:42:58) учитель математики: Задача некорректна. Угол BAD равен 57 градусов, а угол CAD должен быть меньше, т.к. составляет часть от него.
(2014-05-20 21:44:56) Администратор: 360°-123°-123°=114° (добавлено в решение)
(2014-05-20 17:14:40) : А как появилось 114