ОГЭ, Математика. Геометрия: Задача №7FDE5C | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №7FDE5C

Задача №713 из 1087
Условие задачи:

Вершины ромба расположены на сторонах параллелограмма, а стороны ромба параллельны диагоналям параллелограмма. Найдите отношение площадей ромба и параллелограмма, если отношение диагоналей параллелограмма равно 57.

Решение задачи:

Для удобства введем обозначения:
a - сторона ромба (они равны по определению ромба)
d - диагональ AC
57d - диагональ BD (по условию)
AE - k
EB - t
Площадь параллелограмма через диагонали равна BD*AC*sinα/2 = 57d*d*sinα/2 = 28,5d2*sinα, где α - угол между диагоналями (при чем не важно какой, так как синусы обоих углов будут равны друг другу).
Так как стороны ромба параллельны диагоналям, образуется маленький параллелограмм, а значит противоположные углы равны (по свойству параллелограмма).
Рассмотрим треугольники ABC и EBF.
∠EBF - общий
∠BFE=∠BCA (это соответственные углы)
Следовательно, треугольники ABC и EBF подобны (по первому признаку подобия).
Тогда EF/AC=a/d=t/(t+k)
Аналогично, подобны и треугольники ABD и AEH.
Для них справедливо: a/57d=k/(t+k)
Складываем эти два уравнения:
a/d+a/57d=t/(t+k)+k/(t+k)
57a/57d+a/57d=(t+k)/(t+k)
58a/57d=1
58a=57d
a=57d/58
Sромба=a2sinα
Sпараллелограмма=28,5d2*sinα (это мы выяснили ранее)
Sромба/Sпараллелограмма=(a2sinα)/(28,5d2*sinα)=a2/(28,5d2)=(57d/58)2/(28,5d2)=(572*d2)/(582*28,5*d2)=3249/(3364*28,5)=114/3364=57/1682
Ответ: 57/1682

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №4CDB9E

На окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что ∠NBA=41°. Найдите угол NMB. Ответ дайте в градусах.



Задача №01353A

В прямоугольном треугольнике ABC катет AC=65, а высота CH, опущенная на гипотенузу, равна 1321. Найдите sin∠ABC.



Задача №239EF1

Периметр треугольника равен 54, одна из сторон равна 15, а радиус вписанной в него окружности равен 1. Найдите площадь этого треугольника.



Задача №1B9D94

В параллелограмме ABCD диагонали AC и BD пересекаются в точке K. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника CKD.



Задача №7C632F

Точки M и N являются серединами сторон AB и BC треугольника ABC соответственно. Отрезки AN и CM пересекаются в точке O, AN=27, CM=9. Найдите AO.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Свойства параллелограмма:
1) Противоположные стороны параллелограмма равны.
2) Противоположные углы параллелограмма равны.
3) Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.
4) Сумма углов, прилежащих к одной стороне, равна 180°
5) Точка пересечения диагоналей является центром симметрии параллелограмма.
6) Сумма всех углов равна 360°(сумма углов многоугольника = 180( n - 2), где n кол-во углов).
7) Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его двух смежных сторон: пусть а — длина стороны AB, b — длина стороны BC, d1 и d2 — длины диагоналей; тогда d12+d22 = 2*(a2 + b2).
Признаки параллелограмма.
Четырёхугольник ABCD является параллелограммом, если выполняется одно из следующих условий:
1) Противоположные стороны попарно равны: AB = CD, AD = BC.
2) Противоположные углы попарно равны: ∠A = ∠C, ∠B = ∠D.
3) Диагонали делятся в точке их пересечения пополам: AO = OC, BO = OD.
4) Сумма соседних углов равна 180 градусов: ∠A + ∠B = 180°, ∠B + ∠C = 180°, ∠C + ∠D = 180°, ∠D + ∠A = 180°.
5) Противоположные стороны равны и параллельны: AB = CD, AB || CD.
6) Сумма расстояний между серединами противоположных сторон выпуклого четырехугольника равна его полупериметру.
7) Сумма квадратов диагоналей равна сумме квадратов сторон параллелограмма: AC2+BD2 = AB2+BC2+CD2+DA2.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика