Найдите острый угол параллелограмма ABCD, если биссектриса угла A образует со стороной BC угол, равный 41°. Ответ дайте в градусах.
AD||BC (по определению параллелограмма).
Тогда биссектрису можно рассматривать как секущую.
∠BCA=∠DAC=41° (так как это накрест лежащие углы).
∠DAC=∠BAC=41° (по определению биссектрисы).
∠BAD=∠BAC+∠DAC=41°+41°=82°
Ответ: 82
Поделитесь решением
Присоединяйтесь к нам...
Отрезки AB и CD являются хордами окружности. Найдите расстояние от центра окружности до хорды CD, если AB=20, CD=48, а расстояние от центра окружности до хорды AB равно 24.
Найдите площадь ромба, если его диагонали равны 39 и 2.
Центр окружности, описанной около треугольника ABC, лежит на стороне AB. Радиус окружности равен 10. Найдите BC, если AC=16.
На стороне АС треугольника АВС выбраны точки D и E так, что отрезки AD и CE равны (см. рисунок). Оказалось, что углы АDB и BEC тоже равны. Докажите, что треугольник АВС — равнобедренный.
К окружности с центром в точке O проведены касательная AB и секущая AO. Найдите радиус окружности, если AB=40, AO=85.

Комментарии:
(2024-03-06 09:48:37) : Найдите величину острого угла параллелограмма ABCD, если биссектриса угла A образует со стороной BC угол, равный 40°. Ответ дайте в градусах.