Окружности радиусов 25 и 100 касаются внешним образом. Точки A и B лежат на первой окружности, точки C и D — на второй. При этом AC и BD — общие касательные окружностей. Найдите расстояние между прямыми AB и CD.
Рассмотрим
трапецию ACO1O2
Данная трапеция
прямоугольная, т.к. радиусы перпендикулярны
касательной AC (по
свойству касательной).
Проведем O2K параллельно AC, O2K=AC, т.к. ACKO2 -
прямоугольник.
По
теореме Пифагора:
(O1O2)2=(O2K)2+(KO1)2
(R+r)2=(O2K)2+(R-r)2
(100+25)2=(O2K)2+(100-25)2
15625=(O2K)2+5625
(O2K)2=10000
O2K=100=AC
Рассмотрим треугольники OAO2 и OCO1 (cм. Рис.1).
∠AOO2 - общий
∠OAO2=∠OCO1=90°
Следовательно эти треугольники
подобны (по
первому признаку подобия треугольников).
Тогда, R/r=OC/OA
100/25=OC/AO=(AO+AC)/AO
4AO=AO+100
3OA=100
OA=100/3
Из
подобия этих же треугольников:
R/r=O10/O2O
R/r=(O2O+R+r)/O2O
100/25=(O2O+100+25)/O2O
4(O2O)=O2O+125
3(O2O)=125
O2O=125/3
Обозначим угол ∠AOO2 как α
cosα=OA/OO2=(100/3)/(125/3)=100/125=0,8
Посмотрим на треугольники OAE и OCF.
Они
прямоугольные по
второму свойству хорды.
Тогда для треугольника OAE:
cosα=OE/OA
OE=OA*cosα=(100/3)*0,8=80/3
Для треугольника OCF:
cosα=OF/OC
OF=OC*cosα=(OA+AC)*cosα=
(100/3+100)*0,8=80/3+80=(80+3*80)/3=320/3
EF=OF-OE=320/3-80/3=240/3=80
Ответ: EF=80
Поделитесь решением
Присоединяйтесь к нам...
В параллелограмме ABCD диагональ AC в 2 раза больше стороны AB и ∠ACD=104°. Найдите угол между диагоналями параллелограмма. Ответ дайте в градусах.
Катеты прямоугольного треугольника равны
√
Диагональ прямоугольника образует угол 50° с одной из его сторон. Найдите угол между диагоналями этого прямоугольника. Ответ дайте в градусах.
Через точку A, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности в точке K. Другая прямая пересекает окружность в точках B и C, причём AB=4, AC=64. Найдите AK.
Основания BC и AD трапеции ABCD равны соответственно 4 и 64, BD=16. Докажите, что треугольники CBD и ADB подобны.
Комментарии: