Четырёхугольник ABCD вписан в окружность. Угол ABC равен 138°, угол CAD равен 83°. Найдите угол ABD. Ответ дайте в градусах.
∠ABC является вписанным углом и опирается на дугу ADC (красная).
Следовательно, по теореме о вписанном угле, градусная мера дуги ADC равна 138°*2=276°
Тогда градусная мера синей дуги равна 360°-276°=84°
∠ADC тоже является вписанным углом и опирается на дугу ABC (синяя).
Следовательно, по той же теореме о вписанном угле∠ADC=84°/2=42°.
Рассмотрим треугольник ACD.
По теореме о сумме углов треугольника запишем:
180°=∠ADC+∠CAD+∠ACD
180°=42°+83°+∠ACD
180°-42°-83°=∠ACD
∠ACD=55°
Заметим, что углы ACD и ABD являются вписанными и опираются на одну и ту же дугу.
Следовательно, эти углы равны, ∠ACD=∠ABD=55°
Ответ: 55
Поделитесь решением
Присоединяйтесь к нам...
В трапеции ABCD AB=CD, ∠BDA=67° и ∠BDC=28°. Найдите угол ABD. Ответ дайте в градусах.
Найдите угол ABC. Ответ дайте в градусах.
Точка H является основанием высоты BH, проведенной из вершины прямого угла B прямоугольного треугольника ABC. Окружность с диаметром BH пересекает стороны AB и CB в точках P и K соответственно. Найдите PK, если BH=16.
На гипотенузу AB прямоугольного треугольника ABC опущена высота CH, AH=4, BH=64. Найдите CH.
Точка крепления троса, удерживающего флагшток в вертикальном положении, находится на высоте 12 м от земли. Расстояние от основания флагштока до места крепления троса на земле равно 5 м. Найдите длину троса.
Комментарии: