Высоты остроугольного треугольника ABC, проведённые из точек B и C, продолжили до пересечения с описанной окружностью в точках B1 и C1. Оказалось, что отрезок B1C1 проходит через центр описанной окружности. Найдите угол BAC.
∠BAC является
вписанным углом и опирается на малую дугу CB.
Проведем отрезок CB1, ∠CB1B тоже является
вписанным и опирается на ту же дугу, следовательно, ∠BAC=∠CB1B.
B1C1 является диаметром окружности, так как проходит через ее центр. Следовательно, B1C1 делит окружность на две дуги по 180°
∠B1CC1 тоже
вписанный и опирается на дугу в 180°, по
теореме о вписанном угле ∠B1CC1=180°/2=90°.
Обозначим еще три точки, как показано на рисунке ниже:
Точки E и F - точки пересечения
высот и сторон треугольника ABC, G - точка пересечения
высот.
Рассмотрим треугольники B1CG и BFG.
∠CGB1=∠BGF (так как они
вертикальные).
∠B1CG=∠BFG (так как они оба прямые).
Следовательно, по
теореме о сумме углов треугольника, ∠СB1G=∠GBF
Следовательно, ∠GBF так же равен и ∠BAC
Рассмотрим треугольник AEB.
∠AEB=90° (так как BE -
высота).
∠BAC=∠GBF
Тогда, используя
теорему о сумме углов треугольника получаем, что каждый из углов BAC и GBF равен по 45°.
Ответ: ∠BAC=45°
Поделитесь решением
Присоединяйтесь к нам...
На клетчатой бумаге с размером клетки 1x1 изображён параллелограмм. Найдите его площадь.
Боковая сторона трапеции равна 5, а один из прилегающих к ней углов равен 30°. Найдите площадь трапеции, если её основания равны 3 и 9.
В треугольнике ABC угол C прямой, BC=9, sinA=0,3. Найдите AB.
В окружности с центром в точке О проведены диаметры AD и BC, угол ABO равен 55°. Найдите величину угла ODC.
В треугольнике ABC угол C прямой, AC=8, cosA=0,4. Найдите AB.

Комментарии: