AC и BD – диаметры окружности с центром O. Угол ACB равен 74°. Найдите угол AOD. Ответ дайте в градусах.
Рассмотри треугольник OCB.
OB=OC (т.к. это радиусы)
Следовательно, треугольник OCB -
равнобедренный.
Тогда ∠ACB=∠CBD=74° (по
свойству равнобедренного треугольника).
По
теореме о сумме углов треугольника:
180°=∠ACB+∠CBD+∠BOC
180°=74°+74°+∠BOC
∠BOC=32°
∠BOC=∠AOD=32° (т.к. они
вертикальные).
Ответ: 32
Поделитесь решением
Присоединяйтесь к нам...
Сторона ромба равна 32, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?
В трапецию, сумма длин боковых сторон которой равна 16, вписана окружность. Найдите длину средней линии трапеции.
На окружности отмечены точки A и B так, что меньшая дуга AB равна 26°. Прямая BC касается окружности
в точке B так, что угол ABC острый. Найдите угол ABC. Ответ дайте в градусах.
Боковые стороны AB и CD трапеции ABCD равны соответственно 12 и 15, а основание BC равно 3. Биссектриса угла ADC проходит через середину стороны AB. Найдите площадь трапеции.
На рисунке изображён колодец с «журавлём». Короткое плечо имеет длину 2 м, а длинное плечо — 6 м. На сколько метров опустится конец длинного плеча, когда конец короткого поднимется на 1,5 м?
Комментарии: