В треугольнике ABC AB=BC, а высота AH делит сторону BC на отрезки BH=52 и CH=13. Найдите cosB.
Треугольник ABH
прямоугольный (т.к. AH -
высота).
Тогда cosB=BH/AB (по
определению).
AB=BC (по условию).
BC=BH+CH=52+13=65=AB
cosB=BH/AB=52/65=0,8
Ответ: 0,8
Поделитесь решением
Присоединяйтесь к нам...
В равностороннем треугольнике ABC точки M, N, K — середины сторон АВ, ВС, СА соответственно. Докажите, что АMNK — ромб.
В ромбе ABCD угол ABC равен 72°. Найдите угол ACD. Ответ дайте в градусах.
В треугольнике ABC угол C равен 90°, sinA=9/10, AC=√
Найдите площадь трапеции, изображённой на рисунке.
Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 30° и 120°, а CD=25.
Комментарии: