Лестница соединяет точки A и B и состоит из 15 ступеней. Высота каждой ступени равна 28 см, а длина – 96 см. Найдите расстояние между точками A и B (в метрах).
Каждая ступенька представляет из себя
прямоугольный треугольник, следовательно расстояние между точками А и В будет равняться сумме гипотенуз ступеней.
По
теореме Пифагора:
Квадрат гипотенузы ступени равен 282+962=784+9216=10000
Тогда длина гипотенузы равна √
Ответ: 15
Поделитесь решением
Присоединяйтесь к нам...
Площадь круга равна 90. Найдите площадь сектора этого круга, центральный угол которого равен 60°.
В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 208. Найдите стороны треугольника ABC.
В треугольнике ABC угол C равен 90°, sinA=0,75, AC=√
Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник BCP, равен 27, тангенс угла BAC равен 9/40. Найдите радиус вписанной окружности треугольника ABC.
Найдите величину острого угла параллелограмма ABCD, если биссектриса угла A образует со стороной BC угол, равный 1°. Ответ дайте в градусах.
Комментарии: