Площадь прямоугольного треугольника равна 8√
Площадь
прямоугольного треугольника равна половине произведения катетов:
S=AC*BC/2=8√
Пусть 60-и градусам равен угол ABC.
Тангенс ABC:
td∠ABC=tg60°=AC/BC=√
BC=AC/√
S=AC*BC/2=8√
AC*BC=16√
AC*AC/√
AC2=16√
AC=4
Ответ: 4
Поделитесь решением
Присоединяйтесь к нам...
В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой стороны CD. Угол ADC равен 60°, сторона AB равна 6. Найдите площадь трапеции.
Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 45° и 120°, а CD=40.
Найдите величину угла DOK, если OK — биссектриса угла AOD, ∠DOB=108°. Ответ дайте в градусах.
В параллелограмме АВСD точки E, F, K и М лежат на его сторонах, как показано на рисунке, причём АЕ = CK, BF = DM. Докажите, что EFKM — параллелограмм.
Найдите тангенс угла AOB.
Комментарии:
(2017-09-07 16:39:45) Администратор: Катя, с какого места решения Вам непонятно?
(2017-09-07 15:29:24) Катя: Я не поняла задачу ,можно более развернутое решение .