Площадь прямоугольного треугольника равна 8√
Площадь
прямоугольного треугольника равна половине произведения катетов:
S=AC*BC/2=8√
Пусть 60-и градусам равен угол ABC.
Тангенс ABC:
td∠ABC=tg60°=AC/BC=√
BC=AC/√
S=AC*BC/2=8√
AC*BC=16√
AC*AC/√
AC2=16√
AC=4
Ответ: 4
Поделитесь решением
Присоединяйтесь к нам...
Основание AC равнобедренного треугольника ABC равно 6. Окружность радиуса 4,5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
Через точку A, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности
в точке K. Другая прямая пересекает окружность
в точках B и C, причём AB=4, AC=64. Найдите AK.
Диагональ AC параллелограмма ABCD образует с его сторонами углы, равные 45° и 40°. Найдите больший угол параллелограмма.
В треугольнике ABC AC=BC. Внешний угол при вершине B равен 163°. Найдите угол C. Ответ дайте в градусах.
Дан правильный шестиугольник. Докажите, что если его вершины последовательно соединить отрезками через одну, то получится равносторонний треугольник.
Комментарии:
(2017-09-07 16:39:45) Администратор: Катя, с какого места решения Вам непонятно?
(2017-09-07 15:29:24) Катя: Я не поняла задачу ,можно более развернутое решение .