Медиана равностороннего треугольника равна 13√3. Найдите его сторону.
Вариант №1
По свойству равностороннего треугольника медиана равна (√3/2)*a, тогда:
2*13√3=a√3
26√3=a√3
a=26
Ответ: 26
Поделитесь решением
Присоединяйтесь к нам...
В параллелограмме KLMN точка B — середина стороны KN. Известно, что BL=BM. Докажите, что данный параллелограмм — прямоугольник.
В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой стороны CD. Угол ADC равен 60°, сторона AB равна 1. Найдите площадь трапеции.
Найдите площадь параллелограмма, изображённого на рисунке.
Биссектрисы углов A и D параллелограмма ABCD пересекаются в точке, лежащей на стороне BC. Найдите BC, если AB=26.
Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=10 и MB=18. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.
Комментарии: