В равнобедренную трапецию, периметр которой равен 180, а площадь равна 1620, можно вписать окружность. Найдите расстояние от точки пересечения диагоналей трапеции до её меньшего основания.
Площадь трапеции:
SABCD=EF*(AD+BC)/2=1620
Периметр трапеции:
PABCD=AB+BC+CD+AD=180
AB=CD (так как
трапеция равнобедренная).
Чтобы окружность можно было вписать в трапецию должно выполняться условие - суммы противоположных сторон трапеции должны быть равны, т.е.
AD+BC=AB+CD
AD+BC=2AB (т.к. AB=CD)
Тогда:
PABCD=AB+BC+CD+AD=AB+2AB+AB=4AB=180
AB=45
Значит, AD+BC=2*45=90
SABCD=EF*(AD+BC)/2=EF*90/2=EF*45=1620
EF=36
Проведем
высоту BH, как показано на рисунке.
BH=EF=36, так как BEFH -
прямоугольник.
AH=(AD-BC)/2
По
теореме Пифагора:
AB2=BH2+AH2
452=362+AH2
2025=1296+AH2
729=AH2
√729=AH
27=AH=(AD-BC)/2
54=AD-BC, вспомним, что AD+BC=90
54=AD-(90-AD)
54=AD-90+AD
144=2AD
AD=72
Тогда BC=90-72=18
Рассмотрим треугольники AKF и CKE
AF=AD/2=72/2=36
CE=BC/2=18/2=9
∠AFK=∠CEK=90°
∠AKF=∠CKE (т.к. они
вертикальные)
По
первому признаку подобия треугольников, данные треугольники
подобны.
Тогда, AF/CE=KF/KE
36/9=KF/KE
4=(EF-KE)/KE (вспомним, что EF=36)
4KE=36-KE
5KE=36
KE=7,2
Ответ: 7,2
Поделитесь решением
Присоединяйтесь к нам...
Боковые стороны AB и CD трапеции ABCD равны соответственно 20 и 25, а основание BC равно 5. Биссектриса угла ADC проходит через середину стороны AB. Найдите площадь трапеции.
Радиус вписанной в квадрат окружности равен 14√
Укажите номера верных утверждений.
1) Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
2) Вертикальные углы равны.
3) Любая биссектриса равнобедренного треугольника является его медианой.
Из точки А проведены две касательные к окружности с центром в точке О. Найдите радиус окружности, если угол между касательными равен 60°, а расстояние от точки А до точки О равно 6.
Точка H является основанием высоты, проведённой из вершины прямого угла B треугольника ABC к гипотенузе AC. Найдите AB, если AH=6, AC=24.
Комментарии: