Площадь прямоугольного треугольника равна 128√
Обозначим:
a - искомый катет
b - второй катет
c - гипотенуза
sin30°=1/2 (
табличное значение)
sin30°=a/c=1/2 (по
определению синуса)
c=2a
По
теореме Пифагора:
a2+b2=c2
a2+b2=(2a)2
b2=3a2
b=a√
Из условия: Sтреугольника=ab/2=128√
a*a√
Сокращаем √
a2=128*2=256
a=16
Ответ: a=16
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC AC=BC. Внешний угол при вершине B равен 121°. Найдите угол C. Ответ дайте в градусах.
В прямоугольном треугольнике катет и гипотенуза равны 16 и 34 соответственно. Найдите другой катет этого треугольника.
Площадь прямоугольного треугольника равна 32√
Найдите площадь параллелограмма, изображённого на рисунке.
Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 45° и 120°, а CD=34.

Комментарии: