ОГЭ, Математика. Геометрия: Задача №1F1801 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №1F1801

Задача №723 из 1087
Условие задачи:

Площадь прямоугольного треугольника равна 1283. Один из острых углов равен 30°. Найдите длину катета, лежащего напротив этого угла.

Решение задачи:

Обозначим:
a - искомый катет
b - второй катет
c - гипотенуза
sin30°=1/2 ( табличное значение)
sin30°=a/c=1/2 (по определению синуса)
c=2a
По теореме Пифагора:
a2+b2=c2
a2+b2=(2a)2
b2=3a2
b=a3
Из условия: Sтреугольника=ab/2=1283
a*a3/2=1283
Сокращаем 3:
a2=128*2=256
a=16
Ответ: a=16

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №D6A1B2

В трапеции ABCD AD=8, BC=5, а её площадь равна 13. Найдите площадь треугольника ABC.



Задача №6606B6

Радиус окружности, описанной около равностороннего треугольника, равен 6. Найдите высоту этого треугольника.



Задача №7F3B3D

Точка О – центр окружности, /BOC=110° (см. рисунок). Найдите величину угла BAC (в градусах).



Задача №200783

Высота BH ромба ABCD делит его сторону AD на отрезки AH=4 и HD=1. Найдите площадь ромба.



Задача №3433A9

Высота равнобедренной трапеции, проведённая из вершины C, делит основание AD на отрезки длиной 1 и 5. Найдите длину основания BC.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Теорема Пифагора.
В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

c2=a2+b2
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика