Катеты прямоугольного треугольника равны 30 и 40. Найдите гипотенузу этого треугольника.
Обозначим длину гипотенузы как "х".
По
теореме Пифагора:
x2=302+402
x2=900+1600
x2=2500
x=√2500=50
Ответ: 50
Поделитесь решением
Присоединяйтесь к нам...
Площадь прямоугольного треугольника равна
338√
Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник BCP, равен 8, тангенс угла BAC равен 4/3. Найдите радиус вписанной окружности треугольника ABC.
В треугольнике ABC угол C равен 90°, sinA=9/10, AC=√
Основание AC равнобедренного треугольника ABC равно 18. Окружность радиуса 12 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
Окружности радиусов 44 и 77 касаются внешним образом. Точки A и B лежат на первой окружности, точки C и D — на второй. При этом AC и BD — общие касательные окружностей. Найдите расстояние между прямыми AB и CD.

Комментарии: