ОГЭ, Математика. Геометрия: Задача №223031 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Так как BM - медиана, значит AM=MC=AC/2=88/2=44
Рассмотрим треугольник MBC.
Т.к. BC=BM (по условию задачи), значит этот треугольник равнобедренный, BH - высота этого треугольника. По третьему свойству равнобедренного треугольника MH=HC=MC/2=44/2=22
Искомая AH=AC-HC=88-22=66
Ответ: AH=66

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №C2B171

Стороны AC, AB, BC треугольника ABC равны 25, 7 и 2 соответственно. Точка K расположена вне треугольника ABC, причём отрезок KC пересекает сторону AB в точке, отличной от B. Известно, что треугольник с вершинами K, A и C подобен исходному. Найдите косинус угла AKC, если /KAC>90°.



Задача №857A3B

Косинус острого угла A треугольника ABC равен . Найдите sinA.



Задача №8E2271

В треугольнике ABC угол C прямой, BC=3, cosB=0,6. Найдите AB.



Задача №3A524F

Площадь прямоугольного треугольника равна 2003/3. Один из острых углов равен 60°. Найдите длину катета, лежащего напротив этого угла.



Задача №AC0D7D

На стороне АС треугольника АВС выбраны точки D и E так, что отрезки AD и CE равны (см. рисунок). Оказалось, что отрезки BD и BE тоже равны. Докажите, что треугольник АВС — равнобедренный.

Комментарии:


(2017-05-07 22:39:31) Администратор: Решите свою задачу аналогично этой.
(2017-05-05 11:08:35) : В треугольнике ABC BM — медиана и BH — высота. Известно, что AC = 97 и BC = BM. Найдите AH.

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Равнобедренный треугольник - это треугольник, в котором две стороны равны между собой по длине. Равные стороны называются боковыми, а последняя — основанием.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика