На окружности отмечены точки A и B так, что меньшая дуга AB равна 92°. Прямая BC касается окружности в точке B так, что угол ABC острый. Найдите угол ABC. Ответ дайте в градусах.
Проведем отрезки из центра окружности к точкам А и В, как показано на рисунке.
∠AOB - центральный, следовательно равен градусной мере дуги, т.е. ∠AOB=92°.
Рассмотрим треугольник OAB:
OA=OB, так как это радиусы окружности.
Получается, что данный треугольник
равнобедренный.
Следовательно, ∠OAB=∠OBA=x (по
свойству равнобедренного треугольника)
По
теореме о сумме углов треугольника:
180°=∠AOB+∠OAB+∠OBA
180°=92°+x+x
2x=88°
x=44°
∠OBC=90° (по
свойству касательной).
∠ABC=∠OBC-∠OBA
∠ABC=90°-44°
∠ABC=46°
Ответ: 46
Поделитесь решением
Присоединяйтесь к нам...
Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник BCP, равен 27, тангенс угла BAC равен 9/40. Найдите радиус вписанной окружности треугольника ABC.
На клетчатой бумаге с размером клетки 1см х 1см отмечены точки A, B и C. Найдите расстояние от точки A до середины отрезка BC. Ответ выразите в сантиметрах.
Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник BCP, равен 8, тангенс угла BAC равен 4/3. Найдите радиус вписанной окружности треугольника ABC.
Сторона ромба равна 9, а расстояние от центра ромба до неё равно 1. Найдите площадь ромба.
Основания BC и AD трапеции ABCD равны соответственно 5 и 20, BD=10. Докажите, что треугольники CBD и BDA подобны.
Комментарии:
(2019-10-09 20:18:09) Администратор: meltdown, как?
(2019-10-09 20:09:23) meltdown: помогите пожалуйста
(2017-05-14 18:59:05) Администратор: Людмила, в математике утверждений не бывает. Бывают определения, теоремы и аксиомы. Поэтому при решении или надо ссылаться на определения, теоремы и аксиомы, или доказывать.
(2017-05-13 18:50:59) Людмила: Можно просто воспользоваться утверждением, что угол между хордой и касательной равен половине дуги, заключенной внутри него. Доказывать это не обязательно