Площадь прямоугольного треугольника равна 8√
Площадь
прямоугольного треугольника равна половине произведения катетов:
S=AC*BC/2=8√
Пусть 60-и градусам равен угол ABC.
Тангенс ABC:
td∠ABC=tg60°=AC/BC=√
BC=AC/√
S=AC*BC/2=8√
AC*BC=16√
AC*AC/√
AC2=16√
AC=4
Ответ: 4
Поделитесь решением
Присоединяйтесь к нам...
Точки M и N являются серединами сторон AB и BC треугольника ABC соответственно. Отрезки AN
и CM пересекаются в точке O, AN=21, CM=15. Найдите OM.
Основания трапеции равны 11 и 19, а высота равна 9. Найдите среднюю линию этой трапеции.
Найдите тангенс угла
AOB.
Какие из данных утверждений верны? Запишите их номера.
1) Если три угла одного треугольника соответственно равны трём углам другого треугольника, то такие треугольники подобны.
2) В любой четырёхугольник можно вписать окружность.
3) Центром описанной окружности треугольника является точка пересечения серединных перпендикуляров к его сторонам.
В треугольнике ABC угол C равен 45°, AB=6√
Комментарии:
(2017-09-07 16:39:45) Администратор: Катя, с какого места решения Вам непонятно?
(2017-09-07 15:29:24) Катя: Я не поняла задачу ,можно более развернутое решение .