ОГЭ, Математика. Геометрия: Задача №9C5C4D | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №9C5C4D

Задача №1068 из 1087
Условие задачи:

Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AC=36, MN=27. Площадь треугольника ABC равна 96. Найдите площадь треугольника MBN.

Решение задачи:

Рассмотрим треугольники ABC и MBN.
∠ABC - общий.
∠BAC=∠BMN
Следовательно, по первому признаку подобия, эти треугольники подобны.
Площади треугольника ABC:
SABC=(1/2)AC*h1
96=(1/2)*36*h1
h1=96*2/36=96/18=32/6
Из подобия треугольников получаем пропорцию:
AC/MN=h1/h2

Тогда площадь треугольника MBN:
SMBN=(1/2)MN*h2

Ответ: 54

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №00048B

Какое из следующих утверждений верно?
1) Площадь квадрата равна произведению двух его смежных сторон.
2) Диагональ трапеции делит её на два равных треугольника.
3) Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника, то такие треугольники равны.



Задача №0000C2

В треугольнике ABC AC=BC. Внешний угол при вершине B равен 146°. Найдите угол C . Ответ дайте в градусах.



Задача №095900

Диагональ BD параллелограмма ABCD образует с его сторонами углы, равные 65° и 80°. Найдите меньший угол параллелограмма.



Задача №33759E

Катеты прямоугольного треугольника равны 30 и 40. Найдите гипотенузу этого треугольника.



Задача №1B7017

Медиана BM и биссектриса AP треугольника ABC пересекаются в точке K, длина стороны AC относится к длине стороны AB как 9:7. Найдите отношение площади треугольника ABK к площади четырёхугольника KPCM.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Площадь треугольника
1. Через основание и высоту.


где S - площадь треугольника, h - высота треугольника, a - сторона треугольника, к которой проведена высота.
2. Через две стороны и угол между ними.


где S - площадь треугольника, a - одна из сторон треугольника, b - другая сторона треугольника, α - угол между этими сторонами.
3. Формула Герона.

S=√p(p-a)(p-b)(p-c)
где S - площадь треугольника, a, b и c - стороны треугольника, p - полупериметр: p=(a+b+c)/2.
4. Через радиус вписанной окружности.

S=pr
где S - площадь треугольника, a, b и c - стороны треугольника, r - радиус вписанной окружности, p - полупериметр: p=(a+b+c)/2.
5. Через радиус описанной окружности.


где S - площадь треугольника, a, b и c - стороны треугольника, R - радиус описанной окружности.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика