Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AC=36, MN=28. Площадь треугольника ABC равна 162. Найдите площадь треугольника MBN.
Проведем
высоту BD из вершины B.
Площадь треугольника ABC:
SABC=BD*AC/2
162=BD*36/2
BD=162*2/36=9
Рассмотрим треугольники ABC и MBN.
∠B - общий.
∠BAC=∠BMN (так как это
соответственные углы).
Следовательно, данные треугольники
подобны (по двум углам).
Тогда, справедливо соотношение сторон и высот данных треугольников:
AC/MN=BD/BE
BE=MN*BD/AC=28*9/36=28/4=7
Площадь треугольника ABC:
SMBN=BE*MN/2=7*28/2=7*14=98
Ответ: 98
Поделитесь решением
Присоединяйтесь к нам...
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках K и M соответственно. Найдите AC, если BK:KA=1:2, KM=23.
Основания BC и AD трапеции ABCD равны соответственно 5 и 20, BD=10. Докажите, что треугольники CBD и ADB подобны.
Точка O – центр окружности, на которой лежат точки S, T и V таким образом, что OSTV – ромб. Найдите угол STV. Ответ дайте в градусах.
В треугольнике ABC с тупым углом ABC проведены высоты AA1 и CC1. Докажите, что треугольники A1BC1 и ABC подобны.
В трапеции ABCD известно, что AD=4, BC=3, а её площадь равна 84. Найдите площадь трапеции BCNM, где MN — средняя линия трапеции ABCD.
Комментарии:
(2019-01-19 12:02:26) Администратор: Алина, это условие задачи.
(2019-01-10 13:30:34) алина: как получилось 162?
(2017-05-14 18:51:30) Администратор: Людмила, а про отношение площадей подобных треугольников говорится в каком-нибудь учебнике?
(2017-05-13 18:42:00) Людмила: Можно короче: отношение площадей подобных треугольников равно коэффициенту подобия в квадрате. К=28/36 = 7/9, значит отношение площадей треугольников = 49/81 Тогда S = 162*(49/81) = 98