Сторона CD параллелограмма ABCD вдвое больше стороны BC. Точка F — середина стороны CD. Докажите, что BF — биссектриса угла ABC.
BC=CD/2=CF (по условию задачи)
Следовательно треугольник BCF -
равнобедренный.
По
свойству равнобедренного треугольника:
∠CFB=∠CBF
∠CFB=∠ABF (так как это
накрест-лежащие углы)
Получается, что ∠CBF=∠ABF
Следовательно, BF -
биссектриса.
Поделитесь решением
Присоединяйтесь к нам...
Прямая, параллельная основаниям трапеции ABCD, пересекает её боковые стороны AB и CD в точках E и F соответственно. Найдите длину отрезка EF, если AD=25, BC=15, CF:DF=3:2.
В равностороннем треугольнике ABC точки M, N, K — середины сторон АВ, ВС, СА соответственно. Докажите, что АMNK — ромб.
Через точку A, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности
в точке K. Другая прямая пересекает окружность
в точках B и C, причём AB=4, AC=64. Найдите AK.
В треугольнике два угла равны 46° и 78°. Найдите его третий угол. Ответ дайте в градусах.
Найдите площадь квадрата, описанного около окружности радиуса 32.
Комментарии:
(2022-09-12 10:35:22) : АВ = CD = 14 см, ВС = AD = 27 см за властивостями параллелограмма Р ABCD = АВ + CD + ВС + AD Р ABCD = … Відповідь :