Точка D на стороне AB треугольника ABC выбрана так, что AD=AC. Известно, что ∠CAB=122° и ∠ACB=47°. Найдите угол DCB. Ответ дайте в градусах.
Рассмотрим треугольник ACD.
По
теореме о сумме углов треугольника:
180°=∠CAB+∠ADC+∠ACD
180°=122°+∠ADC+∠ACD
∠ADC+∠ACD=58°
Так как AD=AC, то данный треугольник
равнобедренный.
Тогда, ∠ADC=∠ACD (по
свойству равнобедренного треугольника), получаем, что:
∠ADC=∠ACD=58°/2=29°
∠DCB=∠ACB-∠ACD=47°-29°=18°
Ответ: 18
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC угол C равен 90°, AC=4, AB=5. Найдите sinB.
В треугольнике ABC угол C равен 90°, AC=10, tgA=0,1. Найдите BC.
Прямая, параллельная основаниям трапеции ABCD, пересекает её боковые стороны AB и CD в точках E и F соответственно. Найдите длину отрезка EF, если AD=42, BC=14, CF:DF=4:3.
Медиана BM треугольника ABC является диаметром окружности, пересекающей сторону BC в её середине. Найдите длину стороны AC, если радиус описанной окружности треугольника ABC равен 7.
Угол A четырёхугольника ABCD, вписанного в окружность, равен 82°. Найдите угол C этого четырёхугольника. Ответ дайте в градусах.
Комментарии: