Сторона AC треугольника ABC проходит через центр окружности. Найдите ∠C, если ∠A=30°. Ответ дайте в градусах.
Так как AC проходит через центр окружности, значит это диаметр.
Треугольник ABC вписан в окружность и центр окружности лежит на середине AC, следовательно треугольник ABC
прямоугольный с гипотенузой AC(по
теореме об описанной окружности).
По
теореме о сумме углов треугольника:
180°=∠A+∠B+∠C
180°=30°+90°+∠C
∠C=60°
Ответ: 60
Поделитесь решением
Присоединяйтесь к нам...
Через точку A, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности в точке K. Другая прямая пересекает окружность в точках B и C, причём AB=6, AC=54. Найдите AK.
Косинус острого угла А треугольника равен . Найдите sinA.
Точка крепления троса, удерживающего флагшток в вертикальном положении, находится на высоте 12 м от земли. Расстояние от основания флагштока до места крепления троса на земле равно 5 м. Найдите длину троса.
Высота равностороннего треугольника равна 78√
Катеты прямоугольного треугольника равны 30 и 40. Найдите гипотенузу этого треугольника.
Комментарии:
(2014-05-26 21:48:02) Алина: Потому что ∠ABC прямоугольный =90°
(2014-05-26 18:48:07) мариша: Откуда взяли 90°?
(2014-05-19 13:03:26) ольга: можно еще через дуги. дуга bc=60 т.к. ac диаметр ,то 360:2=180 значит дуга ab=120 и т.к. <с=1/2 дуги ab, то <с=60
(2014-05-18 12:58:49) Ирина: все понятно спасибо