Новость

2015-03-01
Как показала практика, наш сайт не всегда эффективно используются.
Пользователи не мо...читать далее

Юмор

Автор: неизвестен
Сержант выстроил свое отделение, и говорит:
- У меня две новости - мы бежим марш-брос...читать далее

Задача №566 из 832. Номер задачи на WWW.FIPI.RU - 34AF72

Найдите тангенс угла AOB.

Решение задачи:

Вариант №1 (Прислал пользователь Евгений)
Проведем отрезок AB.
Найдем каждую сторону треугольника ABO по теореме Пифагора:
AO2=82+12
AO2=64+1=65
AO=65
AB2=92+32
AB2=81+9=90
AB=90
BO2=102+52
BO2=100+25=125
BO=125
По теореме косинусов:
AB2=AO2+BO2-2AO*BO*cos∠AOB
(90 )2=(65 )2+(125)2-2*65*125*cos∠AOB
90=65+125-265*125*cos∠AOB
-100=-265*5*25*cos∠AOB
50=5325*cos∠AOB
10=25*13*cos∠AOB
10=513*cos∠AOB
2=13*cos∠AOB
cos∠AOB=2/13
По основной тригонометрической формуле:
sin2∠AOB+cos2∠AOB=1
sin2∠AOB+(2/13)2=1
sin2∠AOB+4/13=1
sin2∠AOB=1-4/13
sin2∠AOB=13/13-4/13
sin2∠AOB=(13-4)/13
sin2∠AOB=9/13
sin∠AOB=3/13
tg∠AOB=sin∠AOB/cos∠AOB=(3/13)/(2/13)=3/2=1,5
Ответ: tg∠AOB=1,5


Вариант №2 Достроим чертеж до двух прямоугольных треугольников. Найдем тангенсы для обоих треугольников для их углов О.
1) Для синего треугольника: tgα=10/5=2
2) Для красного треугольника: tgβ=1/8=0,125
Есть тригонометрическая формула:
tg(α-β)=(tgα-tgβ)/(1+tgα*tgβ)
Вычисляем:
tg∠AOB=tg(α-β)=(2-0,125)/(1+2*0,125)=1,875/1,25=1,5
Ответ: tg∠AOB=1,5

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Обратите внимание!!!

Вы можете посмотреть эту и другие задачи в более удобном интерфейсе, в котором выделено поле для дополнительных материалов, использованных для решения. Организован удобный поиск и переход между задачами. Запомните номер этой задачи и введите его в левом меню интерфейса.


Комментарии:


(2015-01-18 10:48:07) Раиса: Спасибо, второй вариант проще, главное, чтобы знали учащиеся формулу тангенс разности 2-х углов
(2015-01-19 00:12:30) Администратор: Раиса, изначально, второй вариант был единственным, но мне писали, что эта формула девятиклассникам неизвестна. Один из пользователей прислал другой вариант. Он длиннее, но зато основан на известных в девятом классе теоремах, поэтому я посчитал, что нужно показать оба варианта.
(2015-02-25 13:47:48) Светлана: Можно найти через скалярное произведение векторов ОА(8;1) и ОВ(5;10),если поместить т.О в начало координат .На какой адрес можно присылать свои варианты решения?
(2015-02-25 14:27:47) Администратор: Светлана, интересный подход, присылайте на zapros@otvet-gotov.ru. Обязательно изучу и опубликую Ваш вариант.
(2015-05-26 17:23:49) 2 вариант это: Аналитическая геометрия уже

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X
X

Введите порядковый номер задачи для раздела 'Геометрия' (от 1 до 832)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X
Warning: mysql_fetch_row(): supplied argument is not a valid MySQL result resource in /home/users2/g/glybin/domains/otvet-gotov.ru/pages/zadacha.php on line 539
X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Наш сайт в каталоге manyweb.ru Copyright otvet-gotov.ru 2014-2016. Все права защищены. Яндекс.Метрика