ОГЭ, Математика. Геометрия: Задача №246BF7 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №246BF7

Задача №777 из 1087
Условие задачи:

Прямая касается окружности в точке K. Точка O — центр окружности. Хорда KM образует с касательной угол, равный 7°. Найдите величину угла OMK. Ответ дайте в градусах.

Решение задачи:

OK перпендикулярен к касательной (по свойству касательной), т.е. угол между OK и касательной равен 90°.
Следовательно, ∠OKM=90°-7°=83°
Треугольник OMK - равнобедренный (т.к. OM и OK - радиусы окружности и, соответственно, равны друг другу).
По свойству равнобедренного треугольника ∠OKM=∠OMK=83°
Ответ: ∠OMK=83°

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №0E2331

На стороне BC остроугольного треугольника ABC (AB≠AC) как на диаметре построена полуокружность, пересекающая высоту AD в точке M, AD=32, MD=8, H — точка пересечения высот треугольника ABC. Найдите AH.



Задача №EB43A2

На стороне АС треугольника АВС выбраны точки D и E так, что углы АDB и BEC равны (см. рисунок). Оказалось, что отрезки AЕ и CD тоже равны. Докажите, что треугольник АВС — равнобедренный.



Задача №8D1B00

Медиана BM и биссектриса AP треугольника ABC пересекаются в точке K, длина стороны AC относится к длине стороны AB как 6:5. Найдите отношение площади треугольника AKM к площади четырёхугольника KPCM.



Задача №B04F9A

Сторона равностороннего треугольника равна 18√3. Найдите радиус окружности, вписанной в этот треугольник.



Задача №2854A7

Укажите номера верных утверждений.
1) Существует квадрат, который не является прямоугольником.
2) Если два угла треугольника равны, то равны и противолежащие им стороны.
3) Внутренние накрест лежащие углы, образованные двумя параллельными прямыми и секущей, равны.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Свойства касательной к окружности:
1) Касательная к окружности перпендикулярна к радиусу, проведённому в точку касания.

2) Отрезки касательных к окружности, проведённые из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика