ОГЭ, Математика. Геометрия: Задача №EC4EC3 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №EC4EC3

Задача №99 из 1087
Условие задачи:

Какие из данных утверждений верны? Запишите их номера.
1) Против большей стороны треугольника лежит меньший угол.
2) Любой квадрат можно вписать в окружность.
3) Площадь трапеции равна произведению средней линии на высоту.

Решение задачи:

Рассмотрим каждое утверждение.
1) "Против большей стороны треугольника лежит меньший угол", это утверждение неверно, т.к. противоречит теореме о соотношении углов и сторон.
2) "Любой квадрат можно вписать в окружность", это утверждение верно, т.к. четырехугольник можно вписать в окружность, если сумма противоположных углов этого четырехугольника равна 180°.
3) "Площадь трапеции равна произведению средней линии на высоту", это утверждение верно.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №03A3EF

Площадь прямоугольного треугольника равна 7223. Один из острых углов равен 30°. Найдите длину катета, лежащего напротив этого угла.



Задача №F7AB41

Радиус окружности, описанной около равностороннего треугольника, равен 12. Найдите высоту этого треугольника.



Задача №EE59B5

Высоты BB1 и CC1 остроугольного треугольника ABC пересекаются в точке E. Докажите, что углы BB1C1 и BCC1 равны.



Задача №D31B80

В треугольнике ABC на его медиане BM отмечена точка K так, что BK:KM=4:1.Прямая AK пересекает сторону BC в точке P.Найдите отношение площади треугольника ABK к площади четырёхугольника KPCM.



Задача №8BFA99

В треугольнике ABC угол C равен 90°, sinA=0,4, AC=21. Найдите AB.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Описанная окружность
— окружность, проходящая через все четыре вершины четырехугольника. Описанная окружность единственна.

Можно описать окружность около:
1) любого прямоугольника (частный случай квадрат)
2) любой равнобедренной трапеции
3) любого четырехугольника, у которого сумма противоположных углов равна 180°.
(См. рисунок: ∠A+∠C=∠B+∠D=180°)
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика