На окружности отмечены точки A и B так, что меньшая дуга AB равна 92°. Прямая BC касается окружности
в точке B так, что угол ABC острый. Найдите угол ABC. Ответ дайте в градусах.
Проведем отрезки из центра окружности к точкам А и В, как показано на рисунке.
∠AOB - центральный, следовательно равен градусной мере дуги, т.е. ∠AOB=92°.
Рассмотрим треугольник OAB:
OA=OB, так как это радиусы окружности.
Получается, что данный треугольник
равнобедренный.
Следовательно, ∠OAB=∠OBA=x (по
свойству равнобедренного треугольника)
По
теореме о сумме углов треугольника:
180°=∠AOB+∠OAB+∠OBA
180°=92°+x+x
2x=88°
x=44°
∠OBC=90° (по
свойству касательной).
∠ABC=∠OBC-∠OBA
∠ABC=90°-44°
∠ABC=46°
Ответ: 46
Поделитесь решением
Присоединяйтесь к нам...
Биссектриса угла A параллелограмма ABCD пересекает сторону BC
в точке K. Найдите периметр параллелограмма, если BK=5, CK=14.
В треугольнике ABC угол C равен 90°, AC=6, AB=10. Найдите sinB.
Какие из следующих утверждений верны?
1) Площадь треугольника меньше произведения двух его сторон.
2) Средняя линия трапеции равна сумме её оснований.
3) Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
В треугольнике ABC биссектриса угла A делит высоту, проведенную из вершины B в отношении 17:15, считая от точки B. Найдите радиус окружности, описанной около треугольника ABC, если BC=16.
В треугольнике АВС углы А и С равны 30° и 50° соответственно. Найдите угол между высотой ВН и биссектрисой BD.
Комментарии:
(2019-10-09 20:18:09) Администратор: meltdown, как?
(2019-10-09 20:09:23) meltdown: помогите пожалуйста
(2017-05-14 18:59:05) Администратор: Людмила, в математике утверждений не бывает. Бывают определения, теоремы и аксиомы. Поэтому при решении или надо ссылаться на определения, теоремы и аксиомы, или доказывать.
(2017-05-13 18:50:59) Людмила: Можно просто воспользоваться утверждением, что угол между хордой и касательной равен половине дуги, заключенной внутри него. Доказывать это не обязательно