Площадь прямоугольного треугольника равна 882√
Площадь
прямоугольного треугольника равна половине произведения катетов:
S=AC*BC/2=882√
Пусть 60-и градусам равен угол BAC.
Тангенс BAC:
td∠BAC=tg60°=BC/AC=√
BC=AC√
S=AC*BC/2=AC*(AC√
AC2√
AC2/2=882
AC2=1764
AC=42
Ответ: 42
Поделитесь решением
Присоединяйтесь к нам...
Найдите площадь треугольника, изображённого на рисунке.
Основание AC равнобедренного треугольника ABC равно 10. Окружность радиуса 7,5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
В окружности с центром в точке O проведены диаметры AD и BC, угол OAB равен 70°. Найдите величину угла OCD.
На какой угол (в градусах) поворачивается минутная стрелка, пока часовая поворачивается на 3°?
Косинус острого угла A треугольника ABC равен . Найдите sinA.
Комментарии:
(2017-10-04 18:09:01) Администратор: Нигер228, квадратный корень из 1764 и есть 42.
(2017-10-03 22:00:15) Нигер228: Как мы из 1764 получили 42?
(2017-02-24 20:00:00) Администратор: Маша, через тангенс легче решать, потому, что и тангенс и площадь треугольника выражаются через катеты треугольника. Если решать через косинус или синус, то придется вводить еще одну неизвестную - гипотенузу, а это сильно усложнит решение.
(2017-02-24 18:30:27) маша: почему надо искать тангенс а не косинус или синус?