Площадь прямоугольного треугольника равна 882√
Площадь
прямоугольного треугольника равна половине произведения катетов:
S=AC*BC/2=882√
Пусть 60-и градусам равен угол BAC.
Тангенс BAC:
td∠BAC=tg60°=BC/AC=√
BC=AC√
S=AC*BC/2=AC*(AC√
AC2√
AC2/2=882
AC2=1764
AC=42
Ответ: 42
Поделитесь решением
Присоединяйтесь к нам...
Точка D на стороне AB треугольника ABC выбрана так, что AD=AC. Известно, что ∠CAB=80° и ∠ACB=59°. Найдите угол DCB. Ответ дайте в градусах.
Найдите тангенс угла А треугольника ABC, изображённого на рисунке.
Радиус окружности, вписанной в трапецию, равен 24. Найдите высоту этой трапеции.
Найдите площадь прямоугольного треугольника, если его катет и гипотенуза равны соответственно 40 и 85.
Центр окружности, описанной около треугольника ABC, лежит на стороне AB. Радиус окружности равен 15. Найдите BC, если AC=24.




Комментарии:
(2017-10-04 18:09:01) Администратор: Нигер228, квадратный корень из 1764 и есть 42.
(2017-10-03 22:00:15) Нигер228: Как мы из 1764 получили 42?
(2017-02-24 20:00:00) Администратор: Маша, через тангенс легче решать, потому, что и тангенс и площадь треугольника выражаются через катеты треугольника. Если решать через косинус или синус, то придется вводить еще одну неизвестную - гипотенузу, а это сильно усложнит решение.
(2017-02-24 18:30:27) маша: почему надо искать тангенс а не косинус или синус?